Subscribe by Email


Showing posts with label Flow Specification. Show all posts
Showing posts with label Flow Specification. Show all posts

Friday, August 30, 2013

What is meant by flow specification?

- There are many problems concerning the flow specification. 
- There are limited options for the provider for mitigation of the DDoS attacks that take place internally. 
- These can be categorized in to three different categories:
Ø  BGP (border gateway protocol) destination black holes
Ø  BGP src/ uRP
Ø  ACLS

- The basic idea is to make use of the BGP for the distribution of the flow specification filters. 
- This helps in dynamic filtering in the routers. 
- The flow specification rules are encoded according to the BGP NLRI address family. 
- The flow spec NLRI is used by the BGP as its opaque key is used as an entry key for its database. 
- The extended communities are used for specifying the actions such as accepting, discarding it, rate limiting, sampling, redirecting and so on. 
- The source/destination prefix and the source/destination port are matched in combinations according to the packet size, ICMP type/co9de, fragment encoding, DSCP, TCP flag and so on. 
- For example, the TCP ports 80…90 are matched with 192.168.0/24. 
- The flow specification trust model uni casts the routing advertisements for controlling the traffic. 
- Filter is considered as a hole for the traffic that is being transmitted to some destination. 
- Filter is accepted when it is advertised for the destination by the next hop. 
Filters with various flow specifications are available today.
- The major benefit of the flow specifications is the filters with the fine grain specification which make it easy for deploying and managing the BGP. 
- The trust and the distribution problems are solved by the BGP. 
- ASIC filtering in routers is leveraged. 
- This is another major benefit of flow specifications. 
Apart from the benefits, there are various limitations of the flow specifications as mentioned below:
Ø  There is no update level security in the BGP.
Ø The statistics and the application level acknowledgement are not well defined.
Ø  The flow specifications work only for those nodes for which the BGP has been enabled.
Ø  Beyond routing the BGP payload has to be overloaded.
Ø  There are various operational issues between the security operations and the network operations.
Ø  The threat information cannot be gathered in one place.

- The integration of the flow specifications was announced by various security vendors. 
- The DDoS attacks are experienced by a large number of customers. 
- The DDoS attacks are now massive and have put the network infrastructure at risk apart from the end customer. 
- Congestion problems occur at both the exchange and the backbone. 
- The attacks of long durations add to the cost of bursting and circuit congestion problems. 
- Depending up on the size of the attack the POP has to be isolated.
- VoIP is also affected. 
- These attacks have negative economic effects as the cost of the operations has been increased. 
- This has led to a degradation of the business. 
- Measures such as firewall filtering and destination BGP black-holing have proved to be insufficient in preventing the attacks. 
- These methods are slow since it is required to log-in and configuring the devices. 
- The configuration has to be constantly. 
- The traffic is terminated to some destination. 
- This affects the availability. 
- The black hole routes are removed by constantly changing the configurations. - Earlier version of the flow specifications had many bugs. 
- There were some limitations on the performance. 
- However, it provided arbor support for the actions of the flow specifications. 
It does not provide multi–vendor support. 
- To some extent it provides the mitigation facility for the attack that occurred at the source. 
- The collateral damage is eliminated for both the carriers and supports the change in the matching criteria. 


Facebook activity